
Building Confidence in 
Healthcare Systems Through 

Chaos Engineering

Carl Chesser
@che55er | che55er.io



About me



Traffic Management 
Patterns

Our Story

Summary

Introducing 
Chaos Experiments



Our Story



The Challenge
Changing existing 
service deployments in 
a complex deployment 
environment supporting 
critical workloads.



Incrementally Build, 
Allowing for Change
We wanted to control our 
deployments through declarative 
configuration, that would allow 
us to continue to change.



Complexity was Growing 
within our Systems
As we pursued more ways of 
increasing availability and 
infrastructure features, our 
systems grew in size and 
complexity.



Cross Functional Team 
Alignment for Experiments
As we built and tested our 
infrastructure, we wanted 
cross team alignment 
when evaluating the layers 
of the infrastructure.



Introducing OpenStack
We wanted to have 
clean availability zone 
separation, and 
therefore wanted to 
ensure we didn’t have 
shared resources.



Introduce the Tiger Team
We had three different 
organizations, but wanted 
one cross functional team.

Platform and Operations already were 
located together, and needed to get our 
Infrastructure team located together as well.



Starting with DC/OS

With our usage of DC/OS and OpenStack, we were needing to 
better understand the reactions of these systems in common 
failure modes.

When we began our journey, 
we were leveraging DC/OS to 
manage our workloads 
(via marathon).



Validate Early Concerns

Simulating traffic through the system while killing VMs, 
powering off hypervisor, stopping availability zones, and shared 
infrastructure in DC/OS.

We introduced gamedays 
to start validating 
concerns of the whole 
system.



Evolving to Kubernetes
As we lived with our 
current system, we 
knew we would 
need to evolve it to 
Kubernetes.

Look, there on 
the horizon!



Competing Time in 
Growing Both Systems
As we were evolving our 
system, we wanted to collapse 
the amount of effort and time 
to start comparing effects of 
production workloads.



Leveraging Spinnaker
When we built our deployments 
for DC/OS, we added support for 
DC/OS to Spinnaker.

We then leveraged it to deploy to 
both systems as we compared 
the behavior in Kubernetes.



Fear of Running Experiments 
on Live Traffic
The introduction of chaos 
experiments on live 
production systems, even 
for a small percentage of 
traffic, can seem too risky.

We are not 
Netflix! 

Larry becomes defensive when first 
approached about applying chaos experiments 

in production at ACME corporation.



Introduced Shadow Traffic
Rather than delaying 
when we could start 
evaluating our newer 
system, we could 
leverage a replay of 
production traffic.



Traffic 
Management

Patterns



API Gateway to 
Facilitate Change
We evolved our systems 
many times by leveraging 
a control gate into our 
system.
Used as an abstraction of the backing system.



Chaining Traffic
Supports an API gateway to simply call 
another gateway, versus the backing 
set of services.



Canary Traffic
Supports gradually transitioning a 
subset of traffic to a different target by 
leveraging chaining.

Avoid the Big Bang.



Shadowing Traffic
Replays a percentage of traffic to 
another backend.

Background replay of 
safe requests.
(read-only, HTTP GET)

Build in a bulkhead for your resource pool supporting the replay of traffic to avoid unnecessary 
stress on your service at bursts of traffic.



Shadow Allows Early Testing
Rather than imposing a canary early with 
experiments, where a small percentage of 
failure still introduces undesirable risk, 
look to leverage a 
shadow of traffic.



Learning from Production 
as we built the New
We were able to further 
compare and evaluate the 
system as we expanded the 
new and applied gameday 
exercises.



Transitioning to Kubernetes 
became Simple*
We identified an issue in our 
existing system, and through our 
continual assessment of the new 
system and practicing traffic 
management, it became a simple* 
choice.
* Simple by it being well understood, practiced, and supported by data. 



Applied in our Cross Site 
Kubernetes Support
Deploy services across 
data center sites, and we 
were able to leverage 
traffic across sites for a 
site incident.



(gamedays)

Introducing 
Chaos 
Experiments



Align the Introduction of Chaos 
with Organized Experiments
Optimize engineering focus 
on the introduction of chaos 
as planned experiments.

Minimize the opportunity for chaos to 
become a scape goat for mysterious 
issues.



Prepare for the Experiment
Describe the scenario, what 
is expected to occur, how it 
will be measured, who is 
needed.

Identify prerequisites that are needed to be 
completed 
(ex. improved telemetry on connection refresh of data store)



Observability is Critical
You need easy access to 
essential telemetry data of all 
the parts of the system.
You want to be able to ask different and new questions 
of your system without having to change the system.

When you discover a gap in visibility, focus on how to make it easy to 
rebuild your system with the improvement through low coordination.



Utilize a Dedicated Space

Have a common space 
(physical/virtual) where 
everyone attends during 
the experiment.

You want to optimize communication when assessing the 
experiment. Schedule adequate amount of time for multiple 
iterations (ex. whole afternoon).



Understand and Embrace
needed Compliance
Production systems will 
bear more compliance and 
controls.

Much of this is around risk, so focus on the introduction 
through low risk scenarios (ex. non-live systems being built).



Plan to be Surprised
We generally always learned 
something new about the 
larger system and the effects 
of compounding failures. 
Capture what was surprising (actual results vs. what was 
the expected results) in an open and searchable repository.

Plan added time to digest the surprises.



Cross Functional Involvement

Diverse perspectives can accelerate and improve group learning.

Helps share knowledge 
on how different layers 
of a system are viewed 
during the experiment.



Prepares Your Team
Your entire team may not be 
able to participate, but they 
should be able to learn from 
the findings.

Experiments help you practice how you look into the system, 
where signals normally arise, and identifies gaps on essential 
telemetry for broader insight.



Summary



Plan for your 
experiments

Work to build cross 
functional teams to 
maximize learning

Identify how to make it easy 
to improve observability into 
your system

Remind your teams and 
leadership on measurable 
improvements through this 
practice

Identify how you can 
minimize risk through traffic 
management approaches



Technologies

https://kubernetes.io/ https://spinnaker.io/

https://dropwizard.io/

https://metrics.dropwizard.io/ https://github.com/Netflix/zuul

https://github.com/tsenart/vegeta



Get your 
Guide!



Thank you!

Carl Chesser
@che55er | che55er.io


